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Phase-separation fronts leave in their wakes morphologies that are substantially different from the morpholo-
gies formed in homogeneous phase separation. In this paper we focus on fronts in binary mixtures that are
enslaved phase-separation fronts, i.e., fronts that follow in the wake of a control-parameter front. In the
one-dimensional case, which is the focus of this paper, the formed morphology is deceptively simple: alter-
nating domains of a regular size. However, determining the size of these domains as a function of the front
speed and other system parameters is a nontrivial problem. We present an analytical solution for the case where
no material is deposited ahead of the front and numerical solutions and scaling arguments for more general
cases. Through these enslaved phase-separation fronts large domains can be formed that are practically unat-
tainable in homogeneous one-dimensional phase separation.
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I. INTRODUCTION

Phase-separation fronts are critically important for the for-
mation of phase-separation morphologies in many practical
applications. Experiments in two-dimensional phase separa-
tion of eutectic mixtures using carefully controlled fronts
have revealed a rich family of morphologies. Lamellar pat-
terns may be formed parallel, perpendicular, or at some angle
to the advancing front. Elongated stripes of droplets and
highly ordered droplet lattices are just a few of the interest-
ing minority component structures. The review by Flesselles
et al. �1� explains the appearance of tilt waves in eutectic
mixtures as a mechanism for the selection of the optimal,
front-speed-induced stripe width. This is of industrial rel-
evance for steel production �2�. Here a binary iron-carbon
alloy which is slowly cooled from one side of the sample
below its critical temperature may form a structure of alter-
nating carbon-rich and carbon-poor bands �3,4�. More com-
plicated mechanisms are relevant for he spontaneous pattern
formation in crystal growth. These patterns can be under-
stood as a result of a highly dynamic solidification front, as
explained in an excellent review by Langer �5�.

An industrial example from a very different research field
is the formation of immersion-precipitation membranes
�6–8�. Here a polymer-solvent mixture is immersed in a non-
solvent. Phase separation is induced as the solvent diffuses
out of the mixture and is replaced with the nonsolvent. Phase
separation starts at the initial interface. From there a phase-
separation front advances into the mixture.

The examples above have in common that a space- and
time-dependent parameter, i.e., the temperature in the binary-
alloy case and the solvent concentration in the immersion-
precipitation case, induces phase separation. We call such a
quantity a control parameter. The advance of the temperature
or the solvent concentration then constitutes a control-
parameter front which is responsible for inducing phase
separation.

An example of essentially one-dimensional �1D� patterns
is Liesegang patterns. These are also believed to be an ex-
ample of front-driven morphology formation. Liesegang pat-
terns typically occur when one electrolyte diffuses into an-

other electrolyte forming an ordered series of precipitation
bands, although the exact mechanisms of band formation are
still under investigation. Antal et al. �9� mapped the ion-
product supersaturation set of theories onto the same model
B equations used in this paper with the major difference of a
moving source term acting as the phase-separation-inducing
front.

Despite its critical role in the formation of complex struc-
tures, only limited attention has been paid to phase-
separation fronts in the soft-matter literature. In the context
of phase-separation theory, the lamellar structure formation
was rediscovered by Furukawa �10�, who examined the
phase separation in two-dimensional binary mixtures follow-
ing a sharp control-parameter front. Furukawa noted that the
morphology formed was strongly determined by the speed of
the front and that the morphology may change quite sud-
denly if the front speed is altered. Hantz and Biro �11� again
noticed the front speed dependence of morphology using a
novel rotating control-parameter front where the front speed
depends on distance from the axis of rotation. Dziarmaga
and Sadzikowski �12� suggested a model that is very similar
to the one presented in the current work as a model for phase
separation in the early universe and found that for slow
fronts the density of domain walls is linear with front speed,
i.e., domain size is proportional to the inverse of front speed.
More recently Gonnella et al. �13� considered the full dy-
namics of the temperature front formed in a system quenched
by contact with external walls, finding that lamella form par-
allel to the temperature front, despite the tendency of the
neutral wetting boundary condition to impose perpendicular
lamella.

The dynamics of the front may in itself be a complex
process. In some cases fronts are strongly influenced by the
dynamics of the material they move through. As noted by
Karma and Sarkissian �14� in their analysis of banded struc-
tures, which can form in some binary alloys, a planar front
that induces solidification may undergo strong velocity oscil-
lations induced by the latent heat of solidification. By con-
trast the latent heat of phase separation in binary mixtures is
much smaller than the latent heat associated with solidifica-
tion. It can typically be assumed that it has a negligible effect
on the front itself.
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In this paper we focus on the simplest situation of a one-
dimensional binary mixture. The phase separation is induced
by a sharp front moving with an imposed constant velocity.
When our control-parameter front is not progressing too
quickly a phase-separation front follows directly behind and
therefore moves at the same speed. We call those fronts en-
slaved phase-separation fronts. In the opposite case, the
phase-separation front will not keep up with the control-
parameter front. This then results in a free phase-separation
front moving into an unstable medium. This special case has
received a significant amount of attention and a good review
is given by Saarloos �15�.

Enslaved phase-separation fronts give rise to a host of
complicated phenomena, as witnessed by the large variety of
morphologies formed. For example, the previously men-
tioned immersion-precipitation membranes �6� form very
different morphologies as processing parameters are varied.
In these systems the dependence is typically so strong that it
becomes difficult to generate reproducible morphologies.
This is why we initially focus on the simplest example of
enslaved phase-separation fronts. Here we consider only one-
dimensional sharp �i.e., not spatially extended� control-
parameter fronts in binary mixtures. This already gives rise
to unexpected and nontrivial behavior as explained below. In
particular it is noteworthy that large domains can be formed
efficiently, even though such domain sizes are practically
unobtainable through homogeneous phase separation in one-
dimensional systems.

In Sec. II we review the theory of spinodal decomposi-
tion, as it is relevant to the understanding of the dynamics of
phase separation at the front. We then define our model
which consists of a Cahn-Hilliard equation with an underly-
ing �4 free energy. The control-parameter front enters
through the time and space dependences of the parameters in
the free energy. We expect the details of the phase-separation
dynamics to depend strongly on the shape of the control-
parameter profile and its dynamics. To simplify our analysis
in this paper we focus on the simplest case consisting of a
control-parameter front which is a sharp step moving with a
constant velocity. To numerically explore the dynamics of
this model, we developed a lattice Boltzmann method �LBM�
simulation in Sec. III. The generic results of these simula-
tions shown in Sec. V elucidate the general behavior of an
enslaved phase-separation front. As the control-parameter
front advances into the mixed region, phase separation en-
sues. Excess material is then diffused both ahead of the front
and through the forming domain into the next domain. This
continues until switching occurs and a new domain of the
opposite kind is formed. This is a regular process that re-
peats, resulting in regular domains after a few cycles.

To predict the morphology we only need to find the de-
pendence of this one length scale as a function of the nondi-
mensional parameters of the equation of motion defined in
Sec. IV. Despite its apparent simplicity this is still a non-
trivial problem. We show in Sec. VI that this can be done
analytically in the case where the mobility ahead of the front
is negligible and the front is moving very slowly. The main
ingredients in the analytical solution are solving for the time
dependence of the concentration right behind the front and
the condition for the switching to a new domain. Together,

those allow us to determine the switching time and hence the
domain size.

Using the results from this special case as a foundation, in
Sec. VII we examine more general enslaved fronts. When we
investigate the effect of nonzero mobility ahead of the front,
we observe in Fig. 8 that the domain size has an unexpected
nonmonotonic dependence on mobility. We were able to
qualitatively explain this behavior as a competition of the
diffusive deposition of material ahead of the front and the
switching condition. With satisfactory results for this model
in one dimension, we conclude with a discussion of possible
extensions such as using the front speed to imprint a domain
pattern and a road map of future research of enslaved front
systems.

II. PHASE SEPARATION AND FRONTS

As previously mentioned, phase separation occurs after
some physical control parameter, such as temperature,
changes so that the system becomes thermodynamically un-
stable. The system forms two or more distinct coexisting
phases, and the property which distinguishes the phases is
called the order parameter. We are concerned with systems
that transition from a one-phase state to a two-phase state as
a control parameter is varied. Despite the fact that most the-
oretical work on phase separation has focused on the homo-
geneous case, most practical cases exhibit phase separation
that does not occur everywhere at once but starts at one or
more initial points and spreads through the system. The
boundary between phase-separated and non-phase-separated
materials is called the phase-separation front. Likewise,
when the control parameter changes inhomogeneously we
refer to the boundary between the single-phase and two-
phase regions as the control-parameter front. The correlation
of the phase-separation front and the control-parameter front
depends on the exact nature of the dynamics of the control
parameter.

Consider a binary mixture of A-type and B-type materials
described by the free energy

F =� dx�a

2
�2 +

b

4
�4 +

�

2
����2 + c�� . �1�

This is a general fourth-order expansion of more specific
free-energy expressions. The cubic term which would nor-
mally appear has been scaled away, without loss of general-
ity, by choosing the critical concentration to be zero. The c
parameter, which can be neglected for homogeneous control
parameters, matters here because it may take different values
on either side of the control-parameter front. For one-
dimensional binary systems the dynamics is diffusive and is
described by the Cahn-Hilliard equation

�t� = ��m � �� , �2�

where the chemical potential is derived from the free energy
as
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� =
�F

��
= a� + b�3 − ��2� + c . �3�

Here a is the control parameter that determines the stability
of the system; a�0 corresponds to the one-phase region and
a�0 corresponds to the two-phase region. The order param-
eter �=�A−�B is the concentration difference of the two
components. For homogeneous parameters the linear c term
can be neglected because it does not change the equilibrium
properties or the dynamics of homogeneous systems. How-
ever, when c=c�x� it will introduce chemical-potential gra-
dients between the materials on either side of the control-
parameter front. Of the other parameters, m is the mobility, �
determines the interfacial energy cost, and the amplitude of
the nonlinear term b determines the equilibrium values of the
order parameter,

�eq = 	�− a

b
. �4�

We now discuss different phase-separation mechanisms de-
scribed by this model.

A. Homogeneous control-parameter change

If the control parameter does change rapidly everywhere
at once—the well-studied homogeneous quench—no
control-parameter front exists. If the system is also homoge-
neous in composition a phase-separation front will not form,
in which case phase separation occurs via spinodal decom-
position or nucleation.

Another interesting situation occurs when the control pa-
rameter is changed homogeneously but gradually. In such a
situation, cascades of sequential phase-separation events are
observed, as shown in the work of Vollmer et al. �16,17�.
Such phenomena are probably also exhibited for extremely
extended enslaved control-parameter fronts but are outside
the scope of the current paper.

In the case of a homogeneous quench where the initial
concentration is between the spinodal values,

�sp = 	�1

3
�eq, �5�

spinodal decomposition is typically observed. It manifests
itself in an exponential change of the order parameter from
initial fluctuations toward one of the two equilibrium values.
The growth rate depends on the fluctuation’s wavelength and
the fastest growing wavelength will outgrow the others and
quickly dominate the morphology. This fastest growing
wavelength is called the spinodal wavelength, denoted by

sp. Although it is not often discussed in the analysis of
homogeneous quenches, we refer to the reciprocal of the
fastest growth rate as the spinodal time, denoted by tsp.

To derive the spinodal wavelength and time one performs
a linear expansion of the Cahn-Hilliard equation �2� around
the initial concentration �in, then Fourier transforms this lin-
earized Cahn-Hilliard equation into k space which results in
the ordinary differential equation �ODE�,

�t�̃�k� = − m��a + 3b�in
2 �k2 + �k4��̃�k� = R�k��̃�k� . �6�

The solution of this equation is the exponential growth of
fluctuations where the growth rate depends on the angular
wave number k,

�̃�k� = eR�k�t. �7�

The angular wave number with the fastest growth rate corre-
sponds to the spinodal wavelength,


sp =
2�

ksp
= 2�� 2�

− �a + 3b�in
2 �

. �8�

The fastest growth rate corresponds to the spinodal time,

tsp =
1

R�ksp�
=

4�

m�a + 3b�in
2 �2 . �9�

Such a morphology, with an initial domain wavelength of

sp, will coarsen to larger length scales, but the process is
inefficient in one dimension since it obeys a logarithmic
growth law L� ln�t� at later times �18�. Therefore it is hard to
form large structures in a finite time.

From the spinodal wavelength and time we define a spin-
odal speed,

usp =

sp

tsp
=

�m
�2�

�− a − 3b�in
2 �3/2, �10�

which can be thought of as a natural speed of phase separa-
tion. This is important to our later analysis of the dynamics
of enslaved phase-separation fronts because it allows us to
define a nondimensional front speed.

B. Free propagation of a phase-separation front

Phase-separation fronts can form if a system has become
unstable due to a sudden homogeneous control-parameter
change and a front is nucleated. This can occur if a defect
causes local phase separation to occur much more rapidly
than through spinodal decomposition. From this defect a
front spreads through the system. Saarloos et al. performed
an analysis of the speed of such fronts for many different
types of systems. For a conserved order-parameter system
described by the Cahn-Hilliard equation �2� with a=−1 and
m=b=�=1, the speed of the front, which they call the linear
spreading speed, is

u� =�34 + 14�7

27
�1 − 3�in

2 �3/2 	 0.73usp. �11�

The initial domain wavelength is found to be smaller than
the spinodal wavelength 
�	0.35
sp and the morphology
then coarsens in time �15�.

C. Enslaved phase-separation fronts

Freely propagating phase-separation fronts can also form
as a special case in a system with a control-parameter front.
If the control-parameter front moves at a speed u
u�, this
can result in the suppression of spontaneous spinodal decom-

ENSLAVED PHASE-SEPARATION FRONTS IN ONE-… PHYSICAL REVIEW E 79, 056710 �2009�

056710-3



position, yet not inhibit the advancement of a freely propa-
gating phase-separation front. However, if the control param-
eter is moving slower than the linear spreading speed u
�u�, the phase-separation front cannot propagate freely and
becomes enslaved by the control-parameter front.

The nature of a control-parameter front highly depends on
the particulars of the physical system. For instance, if tem-
perature is the control parameter of a long binary metal alloy
rod, which is being cooled from one end, the control-
parameter front will resemble the familiar error-function so-
lution of the heat-diffusion equation. However, if the same
rod is being extruded from a hot oven into a cooling envi-
ronment, the control-parameter front will be a much sharper
transition. The shape and speed of the control-parameter
front will have an impact on the morphology formed in the
wake of the front. In this paper we focus on phase-separation
fronts enslaved by a sharp control-parameter front moving
with a constant velocity. This sharp control parameter front
will be represented by a step function for the parameters in
the free energy and the mobility in the Cahn-Hilliard equa-
tion.

We now introduce a lattice Boltzmann method to numeri-
cally investigate this system. We will see that this control-
parameter front induces phase-separation dynamics which is
confined to a limited region around the front. Consequently
we can reduce the computational cost by focusing on a nar-
row region around the front.

III. LATTICE BOLTZMANN METHOD
FOR PHASE-SEPARATION FRONTS IN 1D

As we mentioned above, the dynamically important re-
gion for this model is restricted to a narrow area around
the front. So rather than simulate a stationary system with a
front moving through it, we consider the equivalent case of
material passing a stationary phase-separation front with ve-
locity u. This allows us to use a much smaller simulation
size. This changes the diffusive equation of motion �2� to the
advection-diffusion equation

�t� + ��u�� = ��m � �� , �12�

where u was the constant phase-separation front speed,
which now appears as the material advection speed. The pa-
rameters which define the sharp control-parameter front are

a�x� = aS + �aM − aS���x − x0� , �13�

b�x� = bS + �bM − bS���x − x0� , �14�

m�x� = mS + �mM − mS���x − x0� , �15�

��x� = �S + ��M − �S���x − x0� , �16�

where ��x� is the Heaviside step function and x0 is the po-
sition of the front. Our naming convention uses the subscript
M to denote the mixing region ahead of the control-
parameter front and the subscript S to denote the separating
region behind the control-parameter front.

This paper deals only with a one-dimensional system and
hydrodynamic effects are irrelevant for one-dimensional bi-

nary mixtures. We could therefore use one of many different
methods to numerically simulate diffusive enslaved fronts,
some of which are much simpler than the LBM. However,
our initial interest in enslaved fronts was for higher-
dimensional systems where hydrodynamics may play a very
important role and we developed this LBM with those
higher-dimensional simulations in mind.

The LBM implementation of the advection-diffusion
equation is similar to that of the ordinary diffusion equation;
however, the key differences of an advecting material with
spatially dependent parameters warrants further clarification.
The standard lattice Boltzmann equation with the Bhatnagar-
Gross-Krook �BGK� approximation is

f i�x + vi,t + 1� − f i�x,t� =
1

�
�f i

0 − f i�x,t�� �17�

for discrete integer time and a finite set of discrete velocities
vi defined such that x and x+vi are sites on the spatial lattice.
In order to properly preserve the effect of mobility gradients
in Eq. �12�, we allow the relaxation time to retain position
and time dependence �
��x , t�. To determine the macro-
scopic evolution equation for this model, we define a con-
tinuous f i
 f i�x , t� and expand the first term to second order
in a Taylor series as

f i�x + vi,t + 1� = f i + Dfi +
1

2
D2f i + O�D3� ,

where D is the total derivative operator,

D 
 �t + vi���. �18�

This allows us to rewrite Eq. �17� as

Dfi +
1

2
D2f i + O�D3� =

1

�
�f i

0 − f i� , �19�

and to first order we obtain

f i = f i
0 − �Dfi + O�D2� . �20�

With repeated use of Eq. �20� to replace f i in Eq. �19� with
the local equilibrium functions, the hydrodynamic limit of
the lattice Boltzmann equation then becomes

Dfi
0 − D�� −

1

2
�Dfi

0 + O�D3� =
1

�
�f i

0 − f i� . �21�

We then define the equilibrium moments,



i

f i = 

i

f i
0 = � , �22�



i

f i
0vi� = su�� , �23�



i

f i
0vi�vi� = s� + s2u�u�� , �24�

corresponding to a conserved order parameter and a current
of su�. Summing up the Taylor expanded LBE �21� over i
we obtain the equation of motion
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s−1�t� + ��u�� + O��3� = ��m � �� . �25�

This is Eq. �12� to the second order, with the addition of a
parameter s which allows for rescaling simulation time. The
ability to scale simulation time allows us to trade computa-
tional speed for enhanced numerical stability and improved
local Galilean invariance �19�. In this formulation the mobil-
ity m is given by

m�x� = ��x� −
1

2
. �26�

In one dimension we use three discrete velocities,

vi = �0,− 1, + 1� , �27�

which define the set of equilibrium distributions,

f0
0 = �1 − s2u2�� − s� , �28�

f−1
0 =

1

2
��s2u2 − su�� + s�� , �29�

f+1
0 =

1

2
��s2u2 + su�� + s�� . �30�

These equilibrium moments are then used with Eq. �17� to
calculate the time evolution of the system.

We now have to pay the cost for smaller simulation size
allowed by fixing the position of the front in terms of more
complicated inflow and outflow boundary conditions. To rep-
resent a front moving in the positive x direction we define
u�0 which moves the material from right to left past the
stationary front. This defines a fixed inflow boundary at x
=xmax and free outflow boundary at x=0. Our inflow bound-
ary condition is then given by

f−1�xmax,t + 1� = f+1�xmax,t� + su�in, �31�

which ensures a constant material influx jin=u�in. On the
other end of the simulation we have a free advection outflow
boundary condition,

f+1�0,t + 1� = f−1�0,t� − su��0,t� , �32�

ensuring an outflow of jout=u��0�. Both boundary condi-
tions are implemented as the densities are advected. The
boundary conditions are open and therefore the total integral
of the order parameter is not conserved. To calculate the
derivatives of the concentration required for the calculation
of � in Eq. �3� at the boundaries, we define the concentra-
tions outside the lattice to be

��xmax + 1,t� = �in, �33�

��− 1,t� = ��0,t� . �34�

This fully defines our lattice Boltzmann method.

IV. DIMENSIONAL ANALYSIS

Our main purpose is to predict the final morphology
formed by enslaved phase-separation fronts. In Fig. 1 we

show the evolution of the phase-separation front and we see
that only regular alternating domains are formed. Thus, the
final morphology is fully characterized by the length of the
domains formed as a function of the parameters,


 = 
�aM,aS,bM,bS,mM,mS,�M,�S,cM,cS,u,�in� . �35�

However, not all of these parameters are independent. To
reduce the number of free parameters, we define the follow-
ing nondimensional scales:

X =
x


sp
=

x

2�
�− aS

2�S
, �36�

T =
t

tsp
=

tmSaS
2

4�S
, �37�
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FIG. 1. �Color online� Time-lapse plots for an enslaved phase-
separation front moving from left to right at nondimensional speed
U=0.001 leaving regular alternating domains in its wake. The first
recorded profile is at the bottom of the graph with subsequent pro-
files shifted in the positive y axis. Each profile is separated by
200 000 iterations or a nondimensional time difference �T
=12 500. The x-axis scale is in lattice sites. The upper graph shows
the concentration profile over nearly two cycles of domain forma-
tion. The concentration ahead of the front can be seen to increase
over time as the width of the two domains behind the front in-
creases until a new domain is nucleated. The lower graph is the total
chemical potential for this system, showing that the gradient of the
chemical potential is flat except for just ahead of the front and
across the first domain behind the front. Additional simulation pa-
rameters are A=1, M =0.1, �=2, �in=0, and s=0.1.
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� =
�

�eq
= �� bS

− aS
. �38�

Here the length and time are scaled by their spinodal values
and the concentration is scaled by the positive equilibrium
concentration of the separated material. In contrast to homo-
geneous quench spinodal decomposition and free-front
propagation, the initial nondimensional concentration ��in�
does not play a meaningful role in the scaling of the dynam-
ics of phase separation for enslaved front systems. We there-
fore set �in=0 for the definition of spinodal wavelength in
Eq. �8� and spinodal time in Eq. �9� used for nondimension-
alization.

When we apply these nondimensionalizations to the equa-
tion of motion �12�, we obtain

�T� + �X� u

usp
�� =

1

2�2�X�m�x�
mS

�X�− a�x�
aS

� +
b�x�
bS

�3

−
1

8�2

��x�
�S

�X
2� +

c�x�
− aS�eq

�� . �39�

This leaves us with the following dimensionless parameters:

U =
u

usp
=

u

�mS

� 2�S

�− aS�3 , �40�

M =
mM

mS
, A = −

aM

aS
, B =

bM

bS
,

K =
�M

�S
, C =

cM − cS

aS�eq
. �41�

In the mixed-material region the free energy is a convex
function. We can therefore linearize the free energy around
the mean concentration. Formally this is equivalent to setting
bM =0 and obtaining new aM and cM parameters. We there-
fore consider B an irrelevant nondimensional parameter and
choose it to be zero.

For equal concentrations and our symmetric free energy
the cM parameter is always zero. For unequal concentrations
and negligible mobility ahead of the front, the cM parameter
is irrelevant because there is no dynamics in the mixing re-
gion. For non-negligible mobility C is expected to be rel-
evant and lead to a long-range diffusive profile in the mixed
region. This effect, however, is outside the scope of this pa-
per.

We do not expect there to be a strong dependence of
interfacial free energy on the control parameter and thus little
difference between �S and �M. Additionally, due to the large
size of structures being formed, front-induced phase separa-
tion should be insensitive to changes in interfacial free en-
ergy. We therefore set K=1. This results in a nondimensional
domain wavelength which is a function of four nondimen-
sional parameters:

L = L�A,M,U,�in� . �42�

To investigate the dependence of L on U we first turn to
numerical simulations.

V. SIMULATION RESULTS

Let us first consider a generic simulation to discuss the
main features of morphology formation. The result of one
simulation using this one-dimensional LBM implementation
is shown in Fig. 1 as a space-time plot of concentration and
chemical potential. It is clear from this plot that the dynamics
of phase separation is limited to the region around the front
and the chemical potential away from the front is flat. This
simulation started with equal parts A-type and B-type mate-
rials in the mixed region, and the A and B domains formed
after the front passed are therefore of equal size.

We shall now examine the domain formation using the
middle A-type domain in Fig. 1 as an example. Three key
events in the formation of this domain are marked A, B, and
C. At point A the domain is nucleated. The concentration plot
shows a very narrow domain and the chemical-potential plot
shows the previous peak collapsing toward a flat profile. The
domain there expands as it is pulled along with the front. To
grow this domain, B-type material must be transported away.
From the gradient on the chemical potential, we see that
most of this material is pulled across and deposited on the
back of the domain, which advances the back interface of the
domain. Some of the rest is pushed ahead of the front and a
small amount builds up on the forming domain just behind
the front. These last two depositions have the effect of mak-
ing the forming domain increasingly unstable as the concen-
tration at the front increasingly deviates from the equilibrium
concentration. To maintain the currents of material away
from the interface, the chemical-potential gradients must be
maintained. Therefore the trough in the chemical potential
deepens.

At point B the A-type domain has just detached from the
front as a new B-type domain has been nucleated. The
chemical potential very quickly becomes flat across the
newly detached A-type domain as it fully separates to the
positive equilibrium concentration. However, the formation
of a B-type domain at the front causes A-type material to be
deposited on the leading edge of the detached domain,
thereby expanding it. The interface between the A-type do-
main and the new B-type gets pulled along by the front but is
moving with about half the front’s speed. The rate of depo-
sition of material on this moving interface is nearly constant
as revealed by the almost constant linear slope of the chemi-
cal potential.

Point C marks the end of the formation of the domain by
the enslaved phase-separation front as yet another domain is
nucleated. The chemical-potential curve has become flat im-
mediately adjacent to the domain and all material currents to
the interfaces have stopped. The domain is now completely
stationary. Because the domains are highly ordered and much
larger than the interface width, they do not evolve further at
any appreciable rate �18�.

We now qualitatively understand how the morphology is
formed by a one-dimensional enslaved front. To make quan-
titative statements we need to measure the relevant quantities
from the LBM simulations of our model.

A. Measurement methods

The sizes of domains formed are found numerically by
determining the length between zero crossings of the concen-
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tration. To find the zero-crossing point to sublattice preci-
sion, we linearly interpolate between the two lattice sites on
either side of the crossing. The first two domains after the
control-parameter front are still forming and expanding;
therefore, domain length measurements begin at the third
zero crossing behind the front and are an average of two or
more domains. To ensure that there are enough fully formed
domains, we dynamically grow the simulation to always
keep the number of interfaces behind the front greater than
those used to calculate a meaningful average. The measure-
ment is recorded once the uncertainty in the domain length is
both less than one lattice spacing and less than one thou-
sandth the domain length itself. To more directly compare
our enslaved front system to previous work, we double the
domain size to find the domain wavelength. For asymmetric
��in�0� the domain size is multivalued and may lead to
some confusion. In this paper, however, we only present do-
main wavelength measurements for symmetrically mixed
material.

In addition to the sizes of domains formed, we need to
know the time-dependent concentration of the partially
phase-separated material near the front. We cannot simply
measure the concentration at the front, as it would always be
near zero due to the interface there. However, since the
chemical potential is continuous across the front we can in-
vert the bulk chemical potential �defined as Eq. �3� for �
=0� to find the relevant concentration. As shown in the time-
lapse plots of Fig. 1, the chemical potential has a local ex-
tremum at the location of the control-parameter front. The
chemical-potential value we use to find the near-front con-
centration is the interlattice extremum value of a polynomial
fitted to the three most extreme values near the front.

B. Domain size as a function of front speed

Since it is the speed of the control-parameter front that
determines whether the phase-separation front is enslaved,
and for many physical systems the front speed may vary over
time, it seems natural to first observe how the front speed
determines the size of domains. In addition, the interfacial
free-energy cost � plays an important role in determining
homogeneous and free-front length scales. Therefore its ef-
fect on domain size will also be investigated.

As shown in Fig. 2�a�, domains get larger the slower the
front becomes. Also evident is that the larger the domains
become the smaller the effect from the interfacial free en-
ergy, and that for slow enough front speeds the effect would
become negligible. However, we know from our nondimen-
sionalization of the equation of motion that all dependence
on the interfacial energy cost should scale away completely
but only if the simulation is capable of faithfully reproducing
the equation of motion. In Fig. 2�b� the nondimensional res-
caling of the top plot is shown, revealing an impressive data
collapse onto a single curve.

The data collapse provided by the nondimensionalization,
although not unexpected, is very encouraging. We can be
confident that the appropriate parameters for continued in-
vestigation of this model are those revealed in Eq. �41� by
the nondimensionalization procedure. In the remainder of

this paper, we investigate the dependence of the domain
wavelength on the nondimensional parameters given in Eq.
�42�. We now analytically investigate a situation where the
nondimensional front speed U is the only relevant nondimen-
sional parameter.

VI. ANALYTICAL SOLUTION FOR M=0

To develop an analytical theory of domain formation we
focus on the special case of M =0, where there is no dynam-
ics in the mixed material ahead of the front. This reduces the
relevant parameters to just the enslaved front speed U. All
other dimensionless parameters are irrelevant since there is
no dynamics ahead of the front. Due to its simplicity, this
system lends itself especially well to an analytical approach.
We will predict the resultant morphology �domain wave-
lengths� by explicitly solving the dynamics of phase separa-
tion at the front. We accomplish this in two parts: determine
the time dependence of the concentration just behind the
front and find the concentration at which a new domain will
nucleate. By combining these two results we find the switch-
ing time tsw, and thus the domain wavelength,


 = 2utsw. �43�

To numerically verify our analytical results we cannot
simply set the mobility of the mixed region to zero. This
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FIG. 2. Simulation results for domain wavelength 
 as a func-
tion of phase-separation front speed u for various interfacial energy
costs. Results are shown for �a� raw data and �b� after rescaling to
nondimensional lengths and speeds. A single constant value of mo-
bility mM =mS=1 /2 was used for these simulations.
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would require that �M =1 /2, which would lead to an unstable
simulation �20�. Instead, the M =0 case is implemented by
placing the control-parameter front at the positive boundary
and defining the off-lattice concentration as �in.

A. Concentration at the front

To determine the time evolution of the concentration at
the phase-separation front, we examine the current of mate-
rial into and out of the domain interface formed at the front.
We first assume the interface to be sharp by comparison to
the size of the domain forming at the phase-separation front.
From the definition of the nondimensional speed U in Eq.
�40� we can see that U���. Thus a vanishing cost of inter-
facial free energy ��→0� is equivalent to assuming that the
front speed is much slower than the spinodal velocity, i.e.,
U�1. This assumption of a slow front speed is not espe-
cially limiting to our analysis as we are primarily interested
in the formation of large stable structures, unlike those found
for front speeds approaching the free-front speed u� which
are small and rapidly coarsen �15�.

The buildup rate of material in a region is

J =� �t�dx =� � · jdx , �44�

where the current j at a point is determined by the gradient of
the chemical potential,

j�t� = − m � ��t� . �45�

We are interested in the region of the interface forming di-
rectly behind the front at position x=x0. Since that region is
vanishingly small, the rate of material deposited there can be
written as a difference of the chemical-potential gradients on
either side of the front,

J =� �mM � �M − mS � �S���x − x0�dx

= mM � �M − mS � �S. �46�

Since the mobility ahead of the front is zero, the time-
dependent rate of deposition for the interface forming at the
front is

J�t� = − mS � ��t� . �47�

The gradient of the chemical potential across the entire form-
ing domain is nearly constant, as can be seen in Fig. 1. This
means that material pulled behind the front is transported all
the way across the forming domain and deposited on the
second domain. Any deviation from a linear profile of the
chemical potential is of order �t�, as can be seen from the
Cahn-Hilliard equation �2� and the fact that ��x , t� is nearly
stationary inside the forming domain.

The value of the chemical potential at the phase-
separation front �0 changes with time but the chemical po-
tential at the other end of the domain is zero. We can there-
fore write the chemical-potential gradient as

���t� =
�0�t�
��t�

, �48�

where � is the width of the domain forming at the phase-
separation front.

The interface at the phase-separation front moves with the
front, expanding the domain forming behind it. This requires
that the rate of material deposited into the phase-separation
front interface be equal to the difference in concentration
across the interface times the front speed,

J�t� = u��0�t� − �in� , �49�

where u is the �dimensional� front speed, �0�t� is the con-
centration at the phase-separation front, and �in is the mixed-
material concentration.

The M =0 condition means that none of the wrong-type
material can be pushed ahead of the phase-separation front;
instead it must be transferred across and deposited behind the
forming domain. This results in the expansion of the second
domain by moving the interface at a speed uI�u which trails
the phase-separation front. Taking this into account, and us-
ing an argument similar to the one used to derive Eq. �49�,
we can write another expression for the rate of material
deposition behind the front in terms of material removed and
transported to the second interface. We obtain

− J�t� = �u − uI�t��2�eq, �50�

where 2�eq is the change in concentration across the fully
formed interface and �eq is the equilibrium concentration
given by Eq. �4�. For now we will continue to write �eq and
eliminate the variable later through nondimensionalization.

The width of the first domain is found by integrating over
time the relative speeds of the interfaces at both ends of the
domain,

��t� = �
0

t

uI�t�dt = u�
0

t �1 +
�0�t� − �in

2�eq
�dt , �51�

where we eliminated uI by combining Eqs. �49� and �50�. We
then combine Eqs. �47� and �49�, use the definition of ���t�
from Eq. �48�, then substitute the definition of the chemical
potential for our model to find the following alternative ex-
pression for the forming domain’s width:

��t� = −
mS

u

�0�t�
�0�t� − �in

= −
mS

u

aS�0�t� + bS�0
3�t�

�0�t� − �in
. �52�

Equating Eq. �51� with Eq. �52� we find the integral equation

�
0

t �1 +
�0�t� − �in

2�eq
�dt = −

mS

u2

aS�0�t� + bS�0
3�t�

�0�t� − �in
�53�

for the concentration at the phase-separation front as a func-
tion of time. Differentiation of Eq. �53� with respect to time
yields

1 +
�0 − �in

2�eq
= −

mS

u2 �bS�0
2�2�0 − 3�in� − aS�in

��0 − �in�2 ��t�0.

�54�

Therefore
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�t�0 =
− u2��0 − �in�2�2�eq + �0 − �in�

2mS�eq�bS�0
2�2�0 − 3�in� − aS�in�

, �55�

where the time dependence of �0 is implied. We nondimen-
sionalize this using Eqs. �36�–�38� and obtain

�T�0 = �2U2 ��0 − �in�2�2 + �0 − �in��3�in
2 − 1�

2�0
3 − 3�0

2�in − �in

,

�56�

which, for general U and �in, can be solved numerically.
For the �in=0 case of symmetric inflow concentration,

Eq. �56� simplifies to

�T�0 = − �2U2� 1

�0
+

1

2
� . �57�

The initial concentration must be at equilibrium ��0�0�=1�,
allowing us to find the analytical solution

�0�T� = 2 + 2W�−
1

2
exp�1

4
�2U2T −

1

2
�� , �58�

where W is the principal branch of the Lambert W function.
The Lambert W function is the solution to the equation x
=W�x�exp�W�x�� for complex x and has infinitely many
branches. The principal real branch used for this solution is
plotted in Fig. 3, and more information on the Lambert W
function can be found in �21�.

As explained earlier, our simulations are able to track and
record the concentration at the front by inverting the chemi-
cal potential. In Fig. 4 we show that the analytical solution
is in excellent agreement with our simulation results for
slow phase-separation front speeds. For faster fronts there
is a deviation which is consistent with our assumption of
small U.

B. Switching condition

We will now need to determine when a new domain will
be formed. At first glance one might expect that the system
will switch when the concentration reaches its spinodal
value. As we saw in Fig. 4, however, the switch typically

occurs much earlier. Consider an A-rich domain forming be-
hind the front. Overtaken material can either extend the ex-
isting domain by transporting away excess B-type material
or nucleate a new B-rich domain; we will see that the system
will choose the option that most rapidly minimizes the total
free energy. We now observe that there is already an inter-
face between the domain forming behind the front and the
material the front is overtaking. Because the interface re-
quired to nucleate a new domain is already in place, we only
need to consider the bulk free energy for the switching
mechanism. The inflowing material will nucleate a new do-
main, even without fluctuations, when such a domain forma-
tion continuously minimizes the bulk free energy.

This argument is sketched in Fig. 5. The concentration of
the potential nucleus of B-type material forms one point on
the free-energy curve. The other point on the free-energy
curve is the concentration of phase-separated A material just
behind the front. If the line segment intersects the free-
energy curve at some other point, the free energy can be
lowered by dissolving the potential type-B nucleus, thus di-
luting the domain of type-A material. Nucleation will occur
if the line segment connecting these two points on the free-
energy curve is below the free-energy curve. Thus the system
will always switch before the spinodal concentration is
reached.

In our case the mixed material ahead of the control-
parameter front has a vanishingly small mobility �M =0�, so
the effective concentration of material ahead of the front is
simply �in the concentration of the overtaken mixed mate-
rial. With that point firmly fixed on the free-energy curve, we
can predict the critical concentration at which domain
switching will occur.

We denote the switching concentration—the concentra-
tion at which domain switching due to nucleation occurs—as
�sw. We just need to find the line which lies tangent to �sw

-1/e 1 2 e
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1
W(x)

FIG. 3. Real principal branch of the Lambert W function for
1 /e�x�e �21�. The Lambert W function appears in the solution
for an enslaved front with M =�in=0 for U�1.
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FIG. 4. �Color online� Comparison of the simulation results for
the time evolution of the concentration at the phase-separation front
for fast and slow front speeds with �in=0. Note that the fast phase-
separation front speed simulation shows marked deviation from the
theoretical curve, as expected. Also note that the concentration at
which the domain switches ��sw� does not seem to depend on front
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−2� /�2	0.078.
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on the free-energy curve and crosses the nucleation kernel
concentration �in. The slope of this line is the slope of the
bulk free-energy curve evaluated at the switching concentra-
tion. This is also the definition of the chemical potential at
the switching concentration,

F��sw� − F��in�
�sw − �in

= � dF

d�
�

F��sw�
= ���sw� . �59�

This construction is illustrated in Fig. 5 and results in the
closed-form solution for the switching concentration,

�sw = −
�in

3
	�2

3
�eq

2 −
2

9
�in

2 . �60�

We verified Eq. �60� using our LBM simulations by track-
ing the peak of the chemical potential near the front during a
complete half cycle and recording the maximum value of the
peak for different inflow concentrations �in. This is then in-
verted to find the concentration as a function of the chemical
potential. The concentration at the maximum value of the
chemical-potential peak is the switching concentration. The
results of this test are shown in Fig. 6 and demonstrate ex-
cellent agreement with the theoretical prediction in the range
of −�sp��in��sp. Outside this range the system is meta-
stable and we do not find alternating domains since we do
not consider fluctuations required to induce nucleation.

C. Domain size

The expression for the switching concentration in Eq. �60�
is trivially nondimensionalized,

�sw = −
�in

3
	�2

3
−

2

9
�in

2 , �61�

as is the expected domain wavelength

L = 2UTsw. �62�

Here Tsw is the nondimensional switching time defined as the
time when the concentration at the front reaches the switch-
ing concentration. Plugging the switching concentration of
Eq. �61� for symmetric mixed-material inflow ��in=0� into
the solution of the differential equation for the concentration
at the front, presented in Eq. �58�, yields

�sw =�2

3
= 2 + 2W�−

1

2
exp�1

4
�2U2Tsw −

1

2
�� , �63�

which can be inverted to solve for the switching time,

Tsw =
2��6 + 6 ln�2 − �2/3� − 3�

3�2U2 . �64�

With this value for the switching time we can, at long last,
explicitly solve for the domain wavelength,

L�U� =
4��6 + 6 ln�2 − �2/3� − 3�

3�2U
, �65�

as a function of phase-separation front speed for symmetric
inflow ��in=0�. This solution contains no free parameters
and only relies on the front speed being much smaller than
the spinodal speed.

We verify Eq. �65� by comparing it to data taken from the
LBM simulations. The results are shown in Fig. 7. We see
that the simulation results are in excellent agreement with
our theoretical parameter-free prediction for nondimensional
phase-separation front speeds slower than U�10−3. The do-
main wavelengths for asymmetric inflow ��in�0� can simi-
larly be obtained by numerically solving Eq. �56� for the
switching time as a function of �in.

VII. SOME PROPERTIES OF MORE GENERAL CASES

We have successfully developed an analytical expression
for the morphology formed by an enslaved phase-separation
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FIG. 5. �Color online� Free-energy tangent construction for the
switching condition for an enslaved phase-separation front. The
nucleation kernel has concentration �in and domain-type switching
will occur when the concentration just behind the front reaches �sw.
Also marked are the equilibrium ��eq� and spinodal ��sp�
concentrations.
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various mixed-material concentrations. The solid line shows the
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switching occurs. The circles are switching concentrations recorded
from LBM simulations. The simulation parameters were M =0 and
U=6.366�10−3.
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front in the special case where there is no mixed-material
dynamics and the mixed material is symmetrically com-
posed. We accomplished this by constructing a differential
equation from the analysis of currents which drive the dy-
namics of phase separation at the front. We could only solve
this differential equation analytically after the simplification
allowed by assuming symmetric mixed material; however,
the more general case can be tackled numerically. Along
these same lines, one should be able to construct an even
more general differential equation which includes dynamics
ahead of the control-parameter front. However, even without
such an in-depth analysis we can, at least qualitatively, un-
derstand the effects of mixed-material mobility on domain
formation.

We “turn on” the dynamics ahead of the control-
parameter front by setting the nondimensional mobility M to
some positive value. This results in a family of curves in the
L vs U plane, each of which is similar in shape to Fig. 2�b�.
To see how this affects the size of domains formed, we can
choose some slow front speed and perform a series of simu-
lations with varying M. The results of such a series of simu-
lations is shown in Fig. 8. We observe a rapid but continuous
reduction in domain wavelength as the nondimensional mo-
bility is increased from zero until it reaches a minimum. We
should mention that data of two different kinds of simulation
are shown in the graph. The simulation for M =0 where the
front is at the inflow boundary and M �0 where the front is
firmly inside the lattice. There is excellent agreement be-
tween the methods.

After the sharp reduction levels off, L increases with M
and eventually results in the formation of very large do-
mains. This nonmonotonic behavior is discussed below, fol-
lowed by an explanation of the effects of the final free non-
dimensional parameter A.

A. Small mixed mobility (M™1)

If the dynamics of material ahead of the front are very
slow by comparison to the separated region, the currents are
almost identical to the case of no mixed-material dynamics.

Such a case could be physically realized for a system where
the mobility strongly increases with temperature and we
have a lower critical point. In this case, very little material is
allowed to build up ahead of the front. Currents ahead of the
front are then vanishingly small. What does change, due to
this small buildup ahead of the front, is that the front is now
overtaking a slightly larger nucleus of material. This slightly
larger nucleus will make domain-type switching more ener-
getically favorable.

We can see the effect a small increase in nucleus volume
has on the switching condition by re-examination of Fig. 5.
A slightly larger nucleation kernel has the effect of shifting
�in toward the opposite material type. This results in a shal-
lower tangent line construction which contacts the free-
energy curve closer to the equilibrium concentration. This
means that the concentration of material just behind the front
cannot be diluted as much before domain type switching
occurs and earlier domain type switching results in smaller
domains.

B. Large mixed mobility (Mš1)

This is a case that is easily realizable in real systems. For
strongly phase-separated regions the mobility can become
very small compared to the mixed material. As we saw from
the results of the simulations shown in the inset of Fig. 8, for
large M the domain wavelengths become very large. This
happens because diffusion is rapid in the mixed-material re-
gion and large amounts of material can build up ahead of the
front. When the domain at the front switches type, this
buildup floods into the new domain, thereby making it very
large. In the limit of large M, the domain is predominantly
formed from this material. Since this is effectively the same
as halting the dynamics behind the front, we can understand
this further by examining just the mixed-material dynamics
ahead of the front.
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FIG. 7. �Color online� Nondimensional domain wavelengths for
M =0 from lattice Boltzmann method simulations agree very well
with the analytical prediction for low phase-separation nondimen-
sional front speed U. Note that the theory contains no adjustable
parameters.
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In the reference frame of the front, material pushed ahead
of the front is governed by the drift-diffusion equation

�t� + ��u�� = �m � � , �66�

which is defined for x�x0. Here we have neglected the in-
terfacial term and absorbed the a parameter into the mobility.
Recall that the b parameter does not appear here due to our
earlier decision to set the nondimensional B=0. The bound-
ary condition at the front at x=x0 is

J�t� = u���x0,t� − �eq� , �67�

which is the current of material rejected by the forming do-
main, analogous to the result of Eq. �49�. This boundary
condition results in a buildup of material which will eventu-
ally lead to switching. These two equations are sufficient to
define the material dynamics ahead of the front. We now
nondimensionalize these equations to recover their param-
eterless versions.

We introduce the general length and time scales

x = Xx̂, t = Tt̂ . �68�

It should be noted that X and T are not the same as the
spinodal wavelength and time we used in the earlier nondi-
mensionalization. The drift-diffusion equation then becomes

1

T
�t̂� +

1

X
�̂�X

T û�� =
1

X
�̂�m

1

X �̂�� , �69�

which we rewrite as

�t̂� + �̂�û�� = �̂�mT
X2 �̂�� . �70�

For the boundary condition

J�t� =
X
T û���x0,t� − �eq� , �71�

we obtain the nondimensionalized boundary current

Ĵ�t̂� = û���x0,t� − �eq� . �72�

We now choose the length and time scales such that

1 
 û =
T
Xu, 1 
 m

T
X2 . �73�

This results in the 1D parameterless equation of motion,

�t̂� + �̂� = �̂2� , �74�

and boundary condition

Ĵ = ���x0,t� − �eq� . �75�

While we do not have the analytical solution of this dif-
ferential equation, we know that the solution exists and will
result in a nondimensional switching time t̂sw. We use this to
replace the dimensional switching time appearing in Eq.
�43�, which gives the domain wavelength


 = 2uTt̂sw. �76�

We now evaluate T in terms of m and u from Eq. �73� as
follows:

T =
m

u2 . �77�

This uncovers the expected domain wavelength


 = 2
m

u
t̂sw �

m

u
. �78�

We can re-express this result in terms of the earlier nondi-
mensionalization of Eqs. �36�–�38� as

L �
M

U
. �79�

Thus we uncover the expected scaling behavior of the do-
main wavelength for the simultaneous limit of small U and
large M.

Interestingly, the scaling behavior of 1D coarsening of a
homogeneous quench is logarithmic in time; therefore, en-
slaved phase-separation fronts can build large domains much
more effectively than the phase ordering which follows spin-
odal decomposition. In principle, the speed of the front can
be controlled and thus the production of highly ordered
position-dependent structures becomes possible.

We have already seen from the analytical result for M
=0 in the limit as U→0 that the domain wavelength is pro-
portional to the inverse of the front speed �L�U−1� which
matches the previous scaling argument for the opposite case
of M→�. The scaling argument reveals that LU vs M will
result in universal scaling in the limit of very slow fronts. We
test this by performing simulations on a selected range of
sufficiently slow front speeds U�10−3 and a range of mo-
bilities. The results of these simulations are shown in Fig. 9
revealing the large difference in domain wavelengths in the
U vs M plot which then collapse reasonably well in the LU
vs M plot.

To improve the collapse, even slower simulations would
be required; however, this becomes too computationally ex-
pensive. For the measurements presented here we required
simulations of more than 105 lattice sites simulated for more
than 108 iterations. Such simulations take about 1 week on a
Xeon powered Linux workstation.

C. A and M at the front boundary

The relative quench depth A is the last relevant parameter
which needs to be considered in determining morphology
formed by slow enslaved phase-separation fronts in 1D. The
control parameter in either a purely mixed �aM� or purely
separating �aS� system is usually not a function of position
and can be absorbed into the mobility. In fact, if we were to
consider the mixing region ahead of the front as being en-
tirely detached from the separating region behind the front,
we would be able to completely nondimensionalize away all
free parameters, resulting in separate scale-invariant equa-
tions of motion. However, due to the shared boundary at the
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front linking the two regions, the change in the control pa-
rameter a�x� across the front cannot be ignored. This means
that changing the control-parameter ratio A has different con-
sequences for the resulting morphology than does changing
the mobility ratio M.

The first consequence of changing the order parameter A
has for the dynamics of phase separation is for the material
which gets pushed ahead of the control-parameter front. Re-
call that the chemical potential is continuous across the front
��S=�M�. Ignoring for the moment the interfacial contribu-
tion to the chemical potential, we can write the continuity of
the chemical potential as

�S
3 − �S = A�M ,

⇒�M =
1

A
��S

3 − �S� . �80�

This means that the concentration just ahead of the front and
the concentration just behind the front are tied together. This
is important because the switching condition, even for very
large M, is partly dependent on the concentration of material
just ahead of the front. For A�1, the concentration ahead of
the front becomes larger, causing the switching concentration
to approach the equilibrium concentration, resulting in very
early switching. On the other hand, for A�1 the concentra-
tion ahead of the front becomes close to the symmetrically
mixed concentration, resulting in switching taking longer to
occur.

If we simply use �M in Eq. �80� as an effective �in in the
earlier derived switching condition of Eq. �60�, we discover
another switching condition for large M which is dependent

only on A. This predicted switching concentration is plotted
as the solid line in Fig. 10, along with switching concentra-
tions measured from our LBM simulations. Since the switch-
ing condition assumed no dynamics ahead of the front it, is
not surprising that this prediction is inadequate for the oppo-
site scenario. If we take into account the additional current j
across the front due to the dynamics ahead of the front and
account for this in the effective �in in the switching condi-
tion

�in
ef f =

1

A
��S

3 − �S − j� , �81�

we can measure this current at one value of A and use it to fit
the rest of the curve. This prediction is the dashed line in Fig.
10, with the A=1 switching concentration used as the fitting
value. This prediction agrees well, although not perfectly,
with the simulated values, showing that the current across
the front at switching seems to scale as the inverse of A.

VIII. SUMMARY AND OUTLOOK

Phase-separation front-driven morphology is a rich and
complex subject which has significant potential for new re-
search and applications. In this paper we focused on the sim-
plest case: a one-dimensional binary mixture. For abruptly
changing control parameters, we found that a regular alter-
nating morphology is formed. We have shown that, complex
although the subject may be, certain important aspects of
enslaved phase-separation fronts can be understood well
enough to theoretically predict the morphology.

Using our model of a binary mixture with a sharp control-
parameter front, we were able to determine the effect of all
relevant free parameters on the size of domains formed in a
1D system. We verified our predictions by comparing them
to LBM simulations of our model.
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FIG. 9. Domain length scaling is universal for changes in front
speed and mobility ratios in the slow front speed limit. The upper
graph shows that the nondimensional domain wavelengths L and
front speed U both vary by 1 order of magnitude, yet retain similar
curve shapes.
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FIG. 10. �Color online� Switching concentration for large non-
dimensional mobility M as a function of control-parameter height
A. The predicted curves are calculated by assuming perfect conti-
nuity of the chemical potential across the front and using this to
predict the size of the nucleation kernel in the switching condition.
The dashed line includes the addition of a current j which is caused
by the dynamics ahead of the front and is zero in the M =0 case.
The simulation used a nondimensional mobility ratio M =5 and
front speed U=10−4.
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We were able to reduce the number of relevant parameters
from 12 to 4. We achieved this by rescaling length and time
with the spinodal wavelength and time and the concentration
by the equilibrium value of the order parameter and by mak-
ing some simple physical assumptions, such as near homo-
geneous mixing ahead of the front �B=0�, lack of an overall
chemical-potential gradient �C=A�in�, and a negligible
change in interfacial free energy across the front �K=1�.

Analytical solutions are few and far between for the
theory of morphology formation. Choosing the nondimen-
sional front speed as the primary parameter of interest, we
consider the radical simplification of a front moving into
material which has no mixed-material dynamics. This fixes
the other free parameters and allows us to analytically deter-
mine the dynamics of phase separation induced by a slow
front.

We first find the time dependence of the concentration at
the front. We then determine the mechanism for domain
switching. While typical nucleation arguments are heavily
dependent on the interfacial free energy, our switching con-
dition was found to depend purely on the bulk free energy.

This gives us an analytical prediction of the formed mor-
phology which is in remarkable agreement with the numeri-
cal results. Additionally, this solution functioned as a step-
ping stone for understanding the effects of the remaining
parameters.

By allowing dynamics in the material ahead of the front
we discovered a nonmonotonic dependence of the domain
wavelength on the nondimensional mobility. Allowing a
small amount of material to be pushed ahead of the front
actually decreased domain wavelength, whereas allowing a
large buildup of material ahead of the front resulted in huge
increases in domain wavelength. The former is understood
by an extension of the switching condition and the latter is
explained by a simple scaling argument; when the mobility
in the mixing region is much greater than separating region,
the domain wavelength formed by the front should scale with
the same dependence as the length scale in the mixing re-
gion. This argument resulted in the discovery that, for very
slow front speeds, there is a single universal scaling curve of
the nondimensional domain wavelength as a function of the
nondimensional mobility and front speed.

Domain-type switching is very well understood for the
case of no mixed-material dynamics, and we have explained
the effect of very small mixed-material mobility. The effect
of large mixed-material mobility on the switching condition
is uncovered in the analysis of the quench depth A of the
enslaved front. Modification of the switching condition is

accomplished by including the continuity of the chemical
potential and a current j which is inversely proportional to A.

The effect on one-dimensional morphology formation of
three of the relevant nondimensional parameters is now well
understood. We now briefly mention several research av-
enues that lead on from the results presented in this paper.

We are currently examining higher-dimensional enslaved
control-parameter fronts. Two-dimensional fronts open the
possibility for the formation of stripe morphologies which
are perpendicular or at an angle to the control-parameter
front. Additionally we find other exotic morphologies such as
polka-dot lattices and ovoid domains. Also, dimensionalities
of two and higher allow hydrodynamics to play a role in the
phase-separation dynamics. In three dimensions, enslaved
fronts can induce a rich family of morphologies depending
on the properties of the material and the front. Perhaps the
most intriguing possibility is to be able to control the mate-
rial and front well enough to reliably switch morphologies
during front traversal, resulting in highly ordered highly in-
homogeneous composite materials.

What also remains is to examine more general enslaved
fronts. The most straightforward extension is to attempt to
develop an analytical solution to the sharp one-dimensional
enslaved front for all three free parameters U, A, and M. A
careful accounting of the additional currents caused by dy-
namics ahead of the front should allow an extension of the
differential equation describing the dynamics at the front,
presented in Eq. �56�, for this more general sharp one-
dimensional enslaved front.

Then we will relax the condition of a sharp control-
parameter front to obtain an extended front. We expect that
there will be little change while the width of an extended
control-parameter front is on the order of the interface width,
but extended fronts which approach the size of the forming
domain may result in new and interesting phase-separation
dynamics, even in 1D.
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